LeNet-5模型详解及其TensorFlow代码实现

       本文先分析了LeNet-5模型的结构,然后基于LeNet-5模型写了TensorFlow代码实现mnist数字识别,代码部分进行了详细注解,目前也在学习阶段,有错误欢迎指出,大家一起学习。

       LeNet-5模型结构图如下图:

       image

       LeNet-5模型总共有7层。

       第一层:卷积层

       第一层卷积层的输入为原始的图像,原始图像的尺寸为32×32×1。卷积层的过滤器尺寸为5×5,深度为6,不使用全0补充,步长为1。由于没有使用全0补充,所以这一层的输出的尺寸为32-5+1=28,深度为6。这一个卷积层总共有5×5×1×6+6=156个参数,其中6为偏置项参数个数,卷积层的参数个数只和过滤器的尺寸,深度以及当前层节点矩阵的深度有关。因为下一层节点矩阵有28×28×6=4704个节点,每个节点和5×5=25个当前层节点相连,所以本层卷积层总共有4704×(25+1)=122304个连接。

       第二层:池化层

       这一层的输入为第一层的输出,是一个28×28×6的节点矩阵。本层采用的过滤器大小为2×2,步长为2,所以本层的输出矩阵大小为14×14×6。

       第三层:卷积层

       本层的输入矩阵大小为14×14×6,采用的过滤器大小为5×5,深度为16,不使用全0补充,步长为1。这一层的输出的尺寸为14-5+1=10,深度为16,即输出矩阵大小为10×10×16。本层参数有5×5×6×16+16=2416个,连接有10×10×16×(5×5+1)=41600个。

       第四层:池化层

       本层的输入矩阵大小为10×10×16,采用的过滤器大小为2×2,步长为2,本层的输出矩阵大小为5×5×16。

       第五层:全连接层

       本层的输入矩阵大小为5×5×16,在LeNet-5模型的论文中将这一层称为卷积层,但是因为过滤器的大小就是5×5,所以和全连接层没有区别,这里直接看成全连接层。本层输入为5×5×16矩阵,将其拉直为一个长度为5×5×16的向量,即将一个三维矩阵拉直到一维空间以向量的形式表示,这样才可以进入全连接层进行训练。本层的输出节点个数为120,所以总共有5×5×16×120+120=48120个参数。

       第六层:全连接层

       本层的输入节点个数为120个,输出节点个数为84个,总共有120×84+84=10164个参数。

       第七层:全连接层

       本层的输入节点个数为84个,输出节点个数为10个,总共有84×10+10=850个参数。


       接下来以TensorFlow代码展示一个基于LeNet-5模型的mnist数字识别代码。

       mnist数据集png图片格式下载链接:链接:http://pan.baidu.com/s/1eRG6TqU 密码:uf4m

       tensorflow版本:1.2.1

       代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

from skimage import io,transform
import os
import glob
import numpy as np
import tensorflow as tf


#将所有的图片重新设置尺寸为32*32
w = 32
h = 32
c = 1

#mnist数据集中训练数据和测试数据保存地址
train_path = "E:/data/datasets/mnist/train/"
test_path = "E:/data/datasets/mnist/test/"

#读取图片及其标签函数
def read_image(path):
label_dir = [path+x for x in os.listdir(path) if os.path.isdir(path+x)]
images = []
labels = []
for index,folder in enumerate(label_dir):
for img in glob.glob(folder+'/*.png'):
print("reading the image:%s"%img)
image = io.imread(img)
image = transform.resize(image,(w,h,c))
images.append(image)
labels.append(index)
return np.asarray(images,dtype=np.float32),np.asarray(labels,dtype=np.int32)

#读取训练数据及测试数据
train_data,train_label = read_image(train_path)
test_data,test_label = read_image(test_path)

#打乱训练数据及测试数据
train_image_num = len(train_data)
train_image_index = np.arange(train_image_num)
np.random.shuffle(train_image_index)
train_data = train_data[train_image_index]
train_label = train_label[train_image_index]

test_image_num = len(test_data)
test_image_index = np.arange(test_image_num)
np.random.shuffle(test_image_index)
test_data = test_data[test_image_index]
test_label = test_label[test_image_index]

#搭建CNN
x = tf.placeholder(tf.float32,[None,w,h,c],name='x')
y_ = tf.placeholder(tf.int32,[None],name='y_')

def inference(input_tensor,train,regularizer):

#第一层:卷积层,过滤器的尺寸为5×5,深度为6,不使用全0补充,步长为1。
#尺寸变化:32×32×1->28×28×6
with tf.variable_scope('layer1-conv1'):
conv1_weights = tf.get_variable('weight',[5,5,c,6],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv1_biases = tf.get_variable('bias',[6],initializer=tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor,conv1_weights,strides=[1,1,1,1],padding='VALID')
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,conv1_biases))

#第二层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
#尺寸变化:28×28×6->14×14×6
with tf.name_scope('layer2-pool1'):
pool1 = tf.nn.max_pool(relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#第三层:卷积层,过滤器的尺寸为5×5,深度为16,不使用全0补充,步长为1。
#尺寸变化:14×14×6->10×10×16
with tf.variable_scope('layer3-conv2'):
conv2_weights = tf.get_variable('weight',[5,5,6,16],initializer=tf.truncated_normal_initializer(stddev=0.1))
conv2_biases = tf.get_variable('bias',[16],initializer=tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1,conv2_weights,strides=[1,1,1,1],padding='VALID')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,conv2_biases))

#第四层:池化层,过滤器的尺寸为2×2,使用全0补充,步长为2。
#尺寸变化:10×10×6->5×5×16
with tf.variable_scope('layer4-pool2'):
pool2 = tf.nn.max_pool(relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

#将第四层池化层的输出转化为第五层全连接层的输入格式。第四层的输出为5×5×16的矩阵,然而第五层全连接层需要的输入格式
#为向量,所以我们需要把代表每张图片的尺寸为5×5×16的矩阵拉直成一个长度为5×5×16的向量。
#举例说,每次训练64张图片,那么第四层池化层的输出的size为(64,5,5,16),拉直为向量,nodes=5×5×16=400,尺寸size变为(64,400)
pool_shape = pool2.get_shape().as_list()
nodes = pool_shape[1]*pool_shape[2]*pool_shape[3]
reshaped = tf.reshape(pool2,[-1,nodes])

#第五层:全连接层,nodes=5×5×16=400,400->120的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×400->64×120
#训练时,引入dropout,dropout在训练时会随机将部分节点的输出改为0,dropout可以避免过拟合问题。
#这和模型越简单越不容易过拟合思想一致,和正则化限制权重的大小,使得模型不能任意拟合训练数据中的随机噪声,以此达到避免过拟合思想一致。
#本文最后训练时没有采用dropout,dropout项传入参数设置成了False,因为训练和测试写在了一起没有分离,不过大家可以尝试。
with tf.variable_scope('layer5-fc1'):
fc1_weights = tf.get_variable('weight',[nodes,120],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc1_weights))
fc1_biases = tf.get_variable('bias',[120],initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped,fc1_weights) + fc1_biases)
if train:
fc1 = tf.nn.dropout(fc1,0.5)

#第六层:全连接层,120->84的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×120->64×84
with tf.variable_scope('layer6-fc2'):
fc2_weights = tf.get_variable('weight',[120,84],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc2_weights))
fc2_biases = tf.get_variable('bias',[84],initializer=tf.truncated_normal_initializer(stddev=0.1))
fc2 = tf.nn.relu(tf.matmul(fc1,fc2_weights) + fc2_biases)
if train:
fc2 = tf.nn.dropout(fc2,0.5)

#第七层:全连接层(近似表示),84->10的全连接
#尺寸变化:比如一组训练样本为64,那么尺寸变化为64×84->64×10。最后,64×10的矩阵经过softmax之后就得出了64张图片分类于每种数字的概率,
#即得到最后的分类结果。
with tf.variable_scope('layer7-fc3'):
fc3_weights = tf.get_variable('weight',[84,10],initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses',regularizer(fc3_weights))
fc3_biases = tf.get_variable('bias',[10],initializer=tf.truncated_normal_initializer(stddev=0.1))
logit = tf.matmul(fc2,fc3_weights) + fc3_biases
return logit

#正则化,交叉熵,平均交叉熵,损失函数,最小化损失函数,预测和实际equal比较,tf.equal函数会得到True或False,
#accuracy首先将tf.equal比较得到的布尔值转为float型,即True转为1.,False转为0,最后求平均值,即一组样本的正确率。
#比如:一组5个样本,tf.equal比较为[True False True False False],转化为float型为[1. 0 1. 0 0],准确率为2./5=40%。
regularizer = tf.contrib.layers.l2_regularizer(0.001)
y = inference(x,False,regularizer)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y,labels=y_)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
train_op = tf.train.AdamOptimizer(0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(y,1),tf.int32),y_)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

#每次获取batch_size个样本进行训练或测试
def get_batch(data,label,batch_size):
for start_index in range(0,len(data)-batch_size+1,batch_size):
slice_index = slice(start_index,start_index+batch_size)
yield data[slice_index],label[slice_index]

#创建Session会话
with tf.Session() as sess:
#初始化所有变量(权值,偏置等)
sess.run(tf.global_variables_initializer())

#将所有样本训练10次,每次训练中以64个为一组训练完所有样本。
#train_num可以设置大一些。
train_num = 10
batch_size = 64


for i in range(train_num):

train_loss,train_acc,batch_num = 0, 0, 0
for train_data_batch,train_label_batch in get_batch(train_data,train_label,batch_size):
_,err,acc = sess.run([train_op,loss,accuracy],feed_dict={x:train_data_batch,y_:train_label_batch})
train_loss+=err;train_acc+=acc;batch_num+=1
print("train loss:",train_loss/batch_num)
print("train acc:",train_acc/batch_num)

test_loss,test_acc,batch_num = 0, 0, 0
for test_data_batch,test_label_batch in get_batch(test_data,test_label,batch_size):
err,acc = sess.run([loss,accuracy],feed_dict={x:test_data_batch,y_:test_label_batch})
test_loss+=err;test_acc+=acc;batch_num+=1
print("test loss:",test_loss/batch_num)
print("test acc:",test_acc/batch_num)

       最终测试准确率大概在99%左右。

       随机运行一次的训练及测试结果如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
...
test loss: 0.0766476487789
test acc: 0.98577724359
train loss: 0.0529618164884
train acc: 0.993930096051
test loss: 0.0702898033345
test acc: 0.987680288462
train loss: 0.0511233446804
train acc: 0.994213580576
test loss: 0.0881681445843
test acc: 0.982672275641
train loss: 0.0503073274342
train acc: 0.994030149413
test loss: 0.0700190923033
test acc: 0.986979166667

       参考:《TensorFlow:实战Google深度学习框架》